Australopithecus afarensis
From Wikipedia, the free encyclopedia
| Australopithecus afarensis Temporal range: Pliocene, 3.9–2.9 Ma |
|
|---|---|
| A replica of the remains of Lucy, Museo Nacional de Antropología, Mexico City | |
| Scientific classification | |
| Kingdom: | Animalia |
| Phylum: | Chordata |
| Class: | Mammalia |
| Order: | Primates |
| Family: | Hominidae |
| Subfamily: | Homininae |
| Genus: | Australopithecus or Praeanthropus |
| Species: | A. afarensis or P. afarensis |
| Binomial name | |
| Australopithecus afarensis or Praeanthropus afarensis Johanson & White, 1978 |
|
The most famous fossil is the partial skeleton named Lucy (3.2 million years old) found by Donald Johanson and colleagues, who, in celebration of their find, repeatedly played the Beatles song Lucy in the Sky with Diamonds.[3][4][5](p234)
Contents
Localities
-4500 —
–
-4000 —
–
-3500 —
–
-3000 —
–
-2500 —
–
-2000 —
–
-1500 —
–
-1000 —
–
-500 —
–
0 —
Anatomy
Craniodental features and brain size
A. afarensis, forensic facial reconstruction
Skeletal morphology and locomotion
Considerable debate surrounds the locomotor behaviour of A. afarensis. Some studies suggest that A. afarensis was almost exclusively bipedal, while others propose that the creatures were partly arboreal. The anatomy of the hands, feet, and shoulder joints in many ways favour the latter interpretation. In particular, the morphology of the scapula appears to be ape-like and very different from modern humans.[6] The curvature of the finger and toe bones (phalanges) approaches that of modern-day apes, and is suggestive of their ability to efficiently grasp branches and climb. Alternatively, the loss of an abductable great toe and therefore the ability to grasp with the foot (a feature of all other primates) suggests A. afarensis was no longer adapted to climbing.[7]
Lucy skeleton reconstruction, Cleveland Natural History Museum
Importantly, the femur also angles in toward the knee from the hip. This trait would have allowed the foot to have fallen closer to the midline of the body, and is a strong indication of habitual bipedal locomotion. The feet also feature adducted big toes, making it difficult if not impossible to grasp branches with the hindlimbs. The loss of a grasping hindlimb also increases the risk of an infant being dropped or falling, as primates typically hold onto their mothers while the mother goes about her daily business. Without the second set of grasping limbs, the infant cannot maintain as strong a grip, and likely had to be held with help from the mother. The problem of holding the infant would be multiplied if the mother also had to climb trees. Bones of the foot (such as the calcaneus) also indicate bipedality.[9][10]
Computer simulations using dynamic modeling of the skeleton's inertial properties and kinematics suggest A. afarensis was able to walk in the same way modern humans walk, with a normal erect gait or with bent hips and knees, but could not walk in the same way as chimpanzees. The upright gait would have been much more efficient than the bent knee and hip walking, which would have taken twice as much energy.[11][12]
A reconstruction of a female A. afarensis
The presence of a wrist-locking mechanism, though, might suggest they engaged in knuckle-walking.[18] (However, these conclusions have been questioned on the basis of close analysis of knuckle-walking and the comparison of wrist bones in different species of primates).[19] The shoulder joint is also oriented much more cranially (i.e. towards the skull) than that in modern humans, but similar to that in the present-day apes.[6] Combined with the relatively long arms A. afarensis is thought to have had, this is thought by many to be reflective of a heightened ability to use the arm above the head in climbing behaviour. Furthermore, scans of the skulls reveal a canal and bony labyrinth morphology, which is not supportive to proper bipedal locomotion.[20]
Upright bipedal walking is commonly thought to have evolved from knuckle-walking with bent legs, in the manner used by chimpanzees and gorillas to move around on the ground, but fossils such as Orrorin tugenensis indicate bipedalism around 5 to 8 million years ago, in the same general period when genetic studies suggest the lineage of chimpanzees and humans diverged. Modern apes and their fossil ancestors show skeletal adaptations to an upright posture used in tree-climbing, and upright, straight-legged walking has been proposed to have originally evolved as an adaptation to tree-dwelling.
Studies of modern orangutans in Sumatra have shown these apes use four legs when walking on large, stable branches and when swinging underneath slightly smaller branches, but are bipedal and maintain their legs very straight when using multiple small, flexible branches under 4 cm in diameter, while also using their arms for balance and additional support. This enables them to get nearer to the edge of the tree canopy to grasp fruit or cross to another tree.
Climate changes around 11 to 10 million years ago affected forests in East and Central Africa, establishing periods where openings in forest lands prevented travel through the tree canopy. During such times proto-hominins could have adopted upright walking behaviour for ever-increasing ground travel, while the ancestors of gorillas and chimpanzees continued to specialize in climbing vertical tree trunks and lianas with a bent-hip and bent-knee posture—which ultimately lead them also to adopt knuckle-walking for minimal ground travel. This differential development within the larger hominid community would result in A. afarensis being adapted to upright bipedalism for extensive ground travel while still using arms well adapted for climbing smaller trees. Still, the proto-hominins and the ancestors of chimpanzees and gorillas were the closest of relatives, and they shared anatomical features including a fused wrist bone, which may suggest that knuckle-walking was used for a time by human ancestors.[21][22][23]
Other studies suggest an upright spine and a primarily vertical body plan in primates dates back to Morotopithecus bishopi in the Early Miocene of 21.6 Mya, the earliest human-like primates.[24][25] Known from fossil remains found in Africa, australopithecines represent the group from which the ancestors of modern humans emerged. As generally used, the term "australopithecine" covers all early hominin fossils dated from about 7 million to 2.5 million years ago—and some others dated later, i.e., from 2.5 million to 1.4 million years ago. Australopithecines became extinct after that time.[citation needed]
Behaviour
A. afarensis reconstruction
For a long time, no known stone tools were associated with A. afarensis, and paleoanthropologists commonly thought stone artifacts only dated back to about 2.5 Mya.[28] However, a 2010 study suggests the hominin species ate meat by carving animal carcasses with stone implements. This finding pushes back the earliest known use of stone tools among hominins to about 3.4 Mya.[29]
Specimens of A. afarensis
Cast of the remains of "Lucy"
The skull of Selam (DIK 1-1)
A. afarensis skull reconstruction, displayed at Museum of Man, San Diego, California
- LH 4
Main article: LH 4
- The type specimen for A. afarensis is an adult mandible from the site of Laetoli, Tanzania.[30]
- AL 129-1
Main article: AL 129-1
- The first A. afarensis knee joint was discovered in November 1973 by Donald Johanson as part of a team involving Maurice Taieb, Yves Coppens, and Tim White in the Middle Awash of Ethiopia's Afar Depression.
- AL 200-1
Main article: AL 200-1
- An upper palate with teeth found in October 1974
- AL 288-1 (Lucy)
Main article: Lucy (Australopithecus)
- The first A. afarensis skeleton was discovered on November 24, 1974 near Hadar in Ethiopia by Tom Gray in the company of Donald Johanson, as part of a team involving Maurice Taieb, Yves Coppens and Tim White in the Middle Awash of Ethiopia's Afar Depression.
- AL 333
Main article: AL 333
- In 1975, a year after the discovery of Lucy, Donald Johanson's team discovered another site in Hadar which included over 200 fossil specimens from at least 13 individuals, both adults and juveniles. This site, AL 333, is commonly referred to as the "First Family". The close alignment of the remains indicates that all the individuals died at the same time, a unique finding.
-
- AL 333-160
- In February 2011, the discovery of AL 333-160 in Hadar, Ethiopia, at the AL 333 site was announced.[31] The foot bone shows that the species had arches in its feet, which confirmed that the species walked upright for the majority of the time.[32] The foot bone is one of 49 new bones discovered, and indicates that A. afarensis is "a lot more human-like than we had ever supposed before", according to the lead scientist on the study.[33]
- AL 444-2
- This is the cranium of a male found at Hadar in 1992.[34] By the time it was found, it was the first complete skull of A. afarensis.[35] The rarity of relatively complete craniofacial remains in the A. afarensis samples before the discovery of AL 444-2 seriously hampered prior meaningful analysis of those samples' evolutionary significance. In light of AL 444-2 and other new craniofacial remains, Kimbel, Rak, and Johanson argue in favor of the taxonomic unity of A. afarensis.
- Kadanuumuu
Main article: KSD-VP-1/1
- Also called Big Man, this is a partial skeleton believed to be a male.
- Selam
Main article: Selam (Australopithecus)
- In 2000, the skeleton of a 3-year-old A. afarensis female, which comprised almost the entire skull and torso, and most parts of the limbs, was discovered in Dikika, Ethiopia, a few miles from the place where Lucy was found. The features of the skeleton suggested adaptation to walking upright (bipedalism) as well as tree-climbing, features that match the skeletal features of Lucy and fall midway between human and hominid ape anatomy. "Baby Lucy" has officially been named Selam (meaning "peace" in the Amharic/Ethiopian Language).[36]
Related work
Further findings at Afar, including the many hominin bones in site 333, produced more bones of concurrent date, and led to Johanson and White's eventual argument that the Koobi Fora hominins were concurrent with the Afar hominins. In other words, Lucy was not unique in evolving bipedalism and a flat face.In 2001, Meave Leakey proposed a new genus and species, Kenyanthropus platyops, for fossil cranium KNM WT 40000. The fossil cranium appears to have a flat face, but the remains are heavily fragmented. It has many other characteristics similar to A. afarensis remains. It is so far the only representative of its species and genus, and the timeframe for its existence falls within that of A. afarensis.[37]
Another species, called Ardipithecus ramidus, was found by Tim White and colleagues in 1992. This was fully bipedal at 4.4 to 5.8 Mya, yet appears to have been contemporaneous with a woodland environment. Scientists have a rough estimation of the cranial capacity of Ar. ramidus at 300 to 350 cm³, from the data released on the Ardipithecus specimen nicknamed Ardi in 2009.[38]
See also
- Dawn of Humanity (2015 PBS film)
- List of fossil sites (with link directory)
- List of human evolution fossils (with images)
References
- Suwa, G; Asfaw, B.; Kono, R. T.; Kubo, D.; Lovejoy, C. O.; White, T. D.; et al. (2 October 2009). "The Ardipithecus ramidus skull and its implications for hominid origins". Science. 326 (5949): 68, 68e1–68e7. Bibcode:2009Sci...326...68S. doi:10.1126/science.1175825. PMID 19810194.
Further reading
- Mckie, Robin (2000). BBC – Dawn of Man: The Story of Human Evolution. Dorling Kindersley. ISBN 0-7894-6262-1.
- Barraclough, G. (1989). Stone, N., ed. Atlas of World History (3rd ed.). Times Books Limited. ISBN 0-7230-0304-1.
- Australopithecus afarensis from The Human Origins Program at the Smithsonian Institution
- Delson, E.; I. Tattersall; J.A. Van Couvering; A.S. Brooks, eds. (2000). Encyclopedia of human evolution and prehistory (2nd ed.). Garland Publishing, New York. ISBN 0-8153-1696-8.
- Johanson, D.C.; Maitland, A.E. (1981). Lucy: The Beginning of Humankind. St Albans: Granada. ISBN 0-586-08437-1.
External links
| Wikimedia Commons has media related to Australopithecus afarensis. |
- Asa Issie, Aramis and the origin of Australopithecus
- Lucy at the American Museum of Natural History in Manhattan
- Lucy at the Institute of Human Origins at Arizona State University
- Asfarensis
- Anthropological skulls and reconstructions
- Becoming Human: Paleoanthropology, Evolution and Human Origins
- National Geographic "Dikika baby"
- MNSU
- Archaeology Info
- http://humanorigins.si.edu/evidence/human-fossils/species/australopithecus-afarensis Australopithecus afarensis] – The Smithsonian Institution's Human Origins Program
- Washington State University – Australopithicus afarensis: The story of Lucy
- Australopithecus afarensis - Science Journal Article
- Human Timeline (Interactive) – Smithsonian, National Museum of Natural History (August 2016).
No comments:
Post a Comment